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Abstract

This paper deals with the upscaling of the time-harmonic Maxwell equations for heterogeneous media. We analyze the
eddy-current approximation of Maxwell’s equations to describe the electric field for heterogeneous, isotropic magnetic
materials. The magnetic permeability of the materials is assumed to have random heterogeneities described by a Gaussian
random field. We apply the so-called Coarse Graining method to develop a numerical upscaling of the eddy-current model.
The upscaling uses filtering and averaging procedures in Fourier space which results in a formulation of the eddy-current
model on coarser resolution scales where the influence of sub-scale fluctuations is modeled by effective scale- and space-
dependent reluctivity tensors. The effective reluctivity tensors can be obtained by solving local partial differential equations
which contain a Laplacian as well as a curl–curl operator. We present a computational method how the equation of the
combined operators can be discretized and solved numerically using an extended variational formulation compared to
standard discretizations. We compare the results of the numerical upscaling of the eddy-current model with theoretical
results of Eberhard [J.P. Eberhard, Upscaling for the time-harmonic Maxwell equations with heterogeneous magnetic
materials, Physical Review E 72 (3), (2005)] and obtain a very good agreement.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Many realistic electromagnetic systems show electric field effects which are strongly influenced by micro-
scopic magnetic parameters of the materials. The phenomena of eddy-currents in heterogeneous magnetic
materials is one of the examples where the system behavior depends on the microscopic magnetic permeability
distribution. The electromagnetic interactions may take place on very small scales, often of atomistic
magnitude. To reduce the computational complexity of the electromagnetic problem we are interested in an
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upscaling of the eddy-current model onto coarser length scales so that the impact of the sub-scale information
need not to be modeled in detail. For the eddy-current model the resulting macroscopic field and current dis-
tribution strongly depend on the given magnetic permeability data of the material. However, the detailed mag-
netic permeability distribution is in most cases not known explicitly. As a solution the magnetic permeability
in the eddy-current approximation can be described by the stochastic modeling. The stochastic modeling yields
a general approach to handle problems involving heterogeneous materials. It describes an ensemble of realiza-
tions of the heterogeneous material by a random field. The material parameter can then be given by a reali-
zation of the random field where the values of the realization are explicitly known.

Upscaling for Maxwell’s equations has been used for a long time. The use of the mathematical homogeni-
zation theory is one of the first approaches which results in averaged or homogenized equations on a coarser
scale [20]. For materials with micro-periodic structure a homogenization technique was first introduced in
[6,15], where the homogenized material properties have been found by solving local problems by suitable aver-
aging. Heterogeneous composite materials have widely been analyzed, see e.g. [23,24]. A scaling theory for
Maxwell’s equation concerning composite material was developed in Ref. [31] for the first time. In general,
all these homogenization methods have been well analyzed in the literature. For practical applications, how-
ever, they may be of limited use due to the more theoretical approach, the requirements of periodic structures,
as well as the upscaling to a fixed scale only. For many practical applications, these restrictions may be too far-
ranging. Moreover, natural phenomena often need to be modelled by a more realistic way assuming a stoch-
astical distribution for the heterogeneities of the material, where the material characteristics are supposed to
be upscaled to various length scales. In this case other upscaling procedures have to be applied. In Ref. [10], a
wavelet-base upscaling method was analyzed suitable for non-periodic material. For flow problems an upscal-
ing procedure called Coarse Graining method is well known which allows to perform analytical investigations
of heterogeneous media. In the study [11], Eberhard applied the Coarse Graining method for the first time to
develop an upscaling for the time-harmonic Maxwell equations with stochastic magnetic materials.

The Coarse Graining method was originally derived in the scope of large eddy simulations and for flow in
heterogeneous media, see [25,3,2]. Its basic idea is a splitting and averaging of high-frequency modes in Fou-
rier space. The influence of sub-scale fluctuations is given by effective material parameter tensors. The unique
advantage of the Coarse Graining method is that nearly any material can be treated without any restrictions
such as periodicity. Also, the scale of the upscaling can be chosen arbitrarily in contrast to the homogenization
theory.

The theory of the Coarse Graining method for Maxwell’s equations has been analyzed in Ref. [11] where
theoretical results for the reluctivity tensors are obtained via a second-order perturbation theory. The numer-
ical computation of these tensors is still lacking, which will be addressed in this paper. We therefore analyze
the eddy-current approximation with heterogeneous, isotropic magnetic materials, and we formulate the
numerical upscaling based on the Coarse Graining method as shown in Ref. [11]. The upscaling results in effec-
tive scale- and space-dependent reluctivity tensors which can be computed by solving local partial differential
equations – the so-called sub-problems. Due to the Laplacian and the curl–curl operator these equations are
hard to analyze computationally. We present a computational method to discretize the combined operators
and to solve them numerically using an extended variational formulation.

The paper is organized as follows. The next section summarizes the physical and mathematical methods to
formulate the numerical upscaling. In particular, we introduce the modeling of statistically distributed data
with stochastic fields. In Section 3, the theory of the Coarse Graining method for time-harmonic Maxwell
equations is introduced as developed by Eberhard [11]. We continue his study and present a numerical
approach for the upscaling. To calculate the upscaled material parameters we need to solve local partial dif-
ferential equations. Section 4 shows the detailed variational formulation and discretization to obtain a com-
putational scheme. In Section 5, we present numerical results of the upscaling and compare them with the
theoretical results given by the perturbation theory. We finish with a conclusion and outlook.

2. Definitions and mathematical statement

We briefly describe the mathematical background and the formulation underlying the upscaling for
the time-harmonic Maxwell’s equation in the eddy-current approximation. In particular, we introduce the
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appropriate Sobolev spaces which are used for the variational formulations in the numerical upscaling, and we
describe the stochastic modelling for the magnetic permeability used for the resulting Maxwell equation in the
eddy-current approximation.

2.1. Sobolev spaces and Green’s formulae

Let X 2 R3 be a domain with boundary C :¼ oX equipped with an outwards oriented normal unit field n.
We introduce the space L2ðXÞ :¼ ðL2ðXÞÞ3 with the scalar product u � v ¼ ðu; vÞL2ðXÞ :¼

R
X uðxÞvðxÞdx, as done

e.g. in Ref. [27]. We remark the difference to the standard scalar product of L2ðXÞ which shows a semi-linearity
in one of its arguments. The definiton of this scalar product is used due to expressions of the form a � E, where
a and E denotes a real and complex vector, respectively.

The Sobolev space L1ðXÞ contains all functions that are bounded in X and locally integrable [18]. Further
we introduce the following Sobolev spaces,
Hðrot; XÞ :¼ fu 2 L2ðXÞ; curlu 2 L2ðXÞg;
Hðdiv;XÞ :¼ fu 2 L2ðXÞ; divu 2 L2ðXÞg;
where curl ð�Þ and div ð�Þ are set in the weak sense, if necessary [32,7]. For these space we set the following
norms, see e.g. [32,7],
k � k2
Hðrot;XÞ :¼ k � k2

L2ðXÞ þ ðdiamXÞ2 kcurl � k2
L2ðXÞ;

k � k2
Hðdiv;XÞ :¼ k � k2

L2ðXÞ þ ðdiamXÞ2 kdiv � k2
L2ðXÞ;
where the normalization by the diameter of X guarantees correct physical units.
On the boundary C, we apply special differential operators. We introduce the surface gradient gradC defined

by gradCUjC :¼ ðgradUÞs for a function U on X with sufficient regularity. us ¼ ðu� ðn � uÞnÞjC ¼ ððn� uÞ � nÞjC
denotes the tangential trace. Analogously the vectorial surface rotation rotC is defined by
rotCUC :¼ gradCUjC � n. Further, we need the following integration by parts formulae, the so-called Green’s

formulae, for the Laplacian and the curl curl operator, see e.g. [32,7].
Let u 2 Hðrot; XÞ. Then 8U 2 H1ðXÞ
Z

X
u � curlU� curlu �Udx ¼

Z
oX
fu� ngjC UjC dS: ð1aÞ
Let u 2 H1ðXÞ. Then 8U 2 H1ðXÞ
Z
X
ðMuÞ �Uþ ðruÞ � ðrUÞdx ¼

Z
oX
ðonujCÞ � UjC dn: ð1bÞ
We remark that the boundary integrations over the tangential trace fu� ngjC and the normal trace onujC
respectively are well defined in the dual Sobolev space H�1=2ðCÞ of the trace space H1=2ðCÞ, if u has sufficient
regularity, see [9]. Hence it is also obvious that the boundary integrations have to be interpreted in a weak
sense if the functions show lack of requested regularity, see e.g. in [7, Section 5.1.2].

2.2. Stochastic modelling

For the upscaling in the eddy-current approximation we describe the magnetic permeability by a stochastic
modelling. The stochastic modelling yields a practical approach to generate realizations of the material so that
the quantity of interest can be expressed by explicit values. This approach is based on the assumption that the
heterogenities of the data are statistically distributed. In other words, the spatially inhomogeneous distribu-
tion of a field uðxÞ can be identified with a single realization of a stochastic process, defined by the ensemble
of all possible realizations, which we assume to be invariant under space transformations. The stochastic mod-
elling approach is in general more suited for practical applications than the standard homogenization method
where the material is assumed to have a periodic structure, see e.g. [7,17,20]. The stochastic modelling com-
bined with the Coarse Graining method yields an upscaled model equation along with a variable scale for
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the upscaling without the restrictions for the periodicity and the regularity of function spaces as in the homog-
enization method [2,11,13].

We briefly state the stochastical approach as it can be found, e.g. in Refs. [17,12]. Let uðxÞ; x 2 R3, be a
given homogeneous, ergodic and time-independent scalar random field. Due to the ergodicity the volume aver-
age and the ensemble average of the moments of the random field are identical. The field can be divided into its
constant mean value �u and the fluctuations ~uðxÞ, where ~uðxÞ � 0 holds true. Further, the variance r2

u does not
depend on x, and the covariance ~uðxÞ~uðx0Þ ¼: wðx� x0Þ depends on the distance x� x0 only. If the Fourier
transform of w exists, the correlation function of the Fourier transform of u can be defined byb~uðnÞb~uðn0Þ :¼ ŵðn; n0Þ ¼ ð2pÞ3 dðnþ n0Þ ŵðnÞ.

We assume that the correlations of ~uðxÞ almost vanish on lengths which are larger than the intrinsic length
scales. This fact is modelled, for instance, by choosing a Gaussian correlation function, wðx� x0Þ ¼
r2

u expð�
P3

i¼1ðxi � x0iÞ
2
=ð2l2

i ÞÞ. Then, the Gaussian correlation function in Fourier space yields
ŵðnÞ ¼ r2

u ð2pÞ3=2l3
0 expð�n2l2

0=2Þ for isotropic media.
For the numerical generation of the realizations of the random field, we apply an algorithm introduced by

Kraichnan [22], see also [12] for a detailed description of the implementation.

2.3. Eddy-current approximation

The fundamental equations modelling electromagnetic field phenomena in a given domain X are Maxwell’s
equations. For the time-harmonic formulation we assume that the current source density J and the density q
of free charges are given by harmonic functions, i.e. J ðx; tÞ ¼ Re ðeixt JðxÞÞ and qðx; tÞ ¼ Re ðeixt qðxÞÞ.

This implies that the electric field E and the magnetic field H are time-harmonic, see [19]. J; q;E;B and H

are called complex amplitudes of the electromagnetic sources and fields.
The eddy-current approximation for quasi-stationary processes then reads (as shown in [19,7])
curlmcurlEþ ixrE ¼ �ixJG; ð2Þ

which represents a linear partial differential equation of second order. Eq. (2) assumes that materials located in
the domain show linear reactions to impressed fields which yields for the magnetic field B ¼ lH with the mag-
netic permeability lðxÞ. We also assume Ohm’s law J ¼ rEþ JG, where r is the so-called (averaged) conduc-
tivity and JG is the impressed generator current density. In this study lðxÞ is taken as a scalar field with l > 0
anywhere, so that the inverse permeability exists and is given by H ¼ mB where m :¼ l�1 denotes the reluctiv-
ity. Further we assume r 2 L1ðXÞ.

For the uniqueness of the solution it is necessary to specify radiation conditions in infinity, for instance we
set uniformly for all directions x=jxj the so-called Silver–Müller radiation conditions limjxj!1

ffiffiffi
l
p

x�
�

Hþ
ffiffi
e
p
jxjEÞ ¼ 0 and limjxj!1

ffiffi
�
p

x� Eþ ffiffiffi
l
p jxjH

� �
¼ 0.

We assume the permeability field lðxÞ to be normal distributed. This, however, conflicts with our assump-
tion lðxÞ > 0 for all x. Therefore, we set-up the field with a mean �l which is at least four times larger than the
variance; as a result the probability for a value of lðxÞ < 0 is smaller than 10�5 which is sufficient for our com-
putations, see e.g. [28]. This practical approach can be applied if a variable is expected to follow a normal dis-
tribution but is restricted to a certain interval such as the positive axis for instance, as described in Ref. [28] for
a simple example. We remark that another solution to circumvent this problem would be to consider a trun-
cated normal distribution limited to an interval, see e.g. [26] for a normal distribution limited to positive
values.

Let the correlation function as defined in Section 2.2 for mðxÞ be given by its Fourier transformb~mðnÞb~mðn0Þ ¼ ð2pÞ3 �m2 ŵðnÞdðnþ n0Þ, where ŵðnÞ denotes an autocorrelation spectrum as introduced in Section
2.2 with isotropic correlation, that is,
ŵðnÞ ¼ q0 ð2pÞ
3
2 l3

0 exp � 1

2
n2l2

0

� �
: ð3Þ
The variance of the field is denoted by q0 and l0 is the isotropic correlation length. For the particular case of
isotropic fields the correlation function depends on the difference jx� x0j only.
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3. The coarse graining method

This section describes the Coarse Graining method for the upscaling of the eddy-current approximation as
it has been developed in [11]. The key idea of the upscaling method is to transform Eq. (2) first into Fourier
space. Second, the electromagnetic field is split into low- and high-frequency solution modes and then aver-
aged over large wave vectors in Fourier space, which correspond to sub-scale oscillations in real space. This
upscaling process using the Coarse Graining method results in a formulation of Maxwell’s equation (2) on a
coarser resolution scale where the impact of the sub-scale fluctuations is given by an effective reluctivity tensor.

Following the ideas of the Coarse Graining method, Eq. (2) will be projected onto high-frequency and low-
frequency parts in Fourier space, respectively. As these two parts are coupled the Coarse Graining method
decouples them, and after an inverse Fourier transform an upscaled equation akin to (2) on a coarser scale
is obtained which includes a effective reluctivity tensor field.

3.1. Upscaling in Fourier space

Starting with Eq. (2) we split the reluctivity field into its mean and the fluctuations, mðxÞ ¼ �mþ ~mðxÞ, and
apply curl curl ¼ graddiv� M as well as divE ¼ q. In the latter q denotes the free charge distribution varying
on macroscopic scales only. We obtain
1 Th
��mMEðxÞ þ curl ð~mðxÞcurl EðxÞÞ þ ixrEðxÞ ¼ cðxÞ;
with a source term cðxÞ :¼ �ixJGðxÞ � �mgradqðxÞ. This vectorial formulation can be transformed into Fourier
space, and regarding the i.th component it yields1
�b�mX3

j¼1

ðinjÞ2bEiðnÞ þ ixrbEiðnÞ þ �ijk�klminj

Z b~mðn� n0Þin0lbEmðn0Þd3n0 ¼ ĉiðnÞ: ð4Þ
Next, we define analogously to [11] (see Eq. (6) in there)
Rjlðn; n0Þ :¼ inj
b~mðn� n0Þ in0l and g0 ðnÞ :¼ ��m

X
j

ðinjÞ2 þ ixr

 !�1

:

Hence (4) becomes
g�1
0 ðnÞ bEiðnÞ þ �ijk�klm

Z
Rjlðn; n0ÞbEmðn0Þd3n0 ¼ ĉiðnÞ: ð5Þ
We assume that the dyadic Green’s function for problem (5) in Fourier space exists, see e.g. [30]. ThenbGmgðn; n0Þ satisfies for fixed component i and fixed column index g
g�1
0 ðnÞ bGigðn; n0Þ þ

R
�ijk �klm Rjlðn; n00Þ bGmgðn00; n0Þd3n00 ¼ ðdðnþ n0ÞegÞi

()
R
ðg�1

0 ðn
00Þdim dðn� n00Þ þ �ijk �klm Rjlðn; n00ÞÞ bGmgðn00; n0Þd3n00 ¼ dðnþ n0Þdig:
In this definition the summation is given over j; k; l and m. dim denotes the Kronecker delta, dðn� n0Þ a delta
distribution [16] and eð�Þ a basis vector. The definition states an equation system for each column of the dyadic
Green’s function. Further, a series expansion of bGmg in g0 can be derived, see e.g. [11]. Eberhard [11] also
shows that if the fluctuations in Fourier space vanish, b~mðnÞ � 0, bGmgðn; n0Þ has diagonal form.

According to the Coarse Graining method in [11] we define projectors in Fourier space which divide the
field vector in high- and low-frequency parts:
roughout this section, the n-dependence is denoted for the fluctuations of the reluctivity field only.
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Pþk;n½bEðnÞ� :¼ bEðnÞ if jnij > as
k for one i 2 I ;

0 else;

(

P�k;n½bEðnÞ� :¼ bEðnÞ if jnij 6 as
k 8i 2 I ;

0 else;

( ð6Þ
where I ¼ f1; 2; 3g and as is a constant. If necessary we use the abbreviation Pþk;n; n0 ½bEðnÞ� instead of
Pþk;n½Pþk;n0 ½bEðnÞ�� or omit the indices. This holds true for P�, too. We can project the Fourier transform bE of
the solution
bEðnÞ ¼ Pþk;n½bEðnÞ� þ P�k;n½bEðnÞ�

and Eq. (5) as well,
Pþk;n½g�1
0
bEiðnÞ� � Pþk;n �ijk�klm

Z
Rjlðn; n0ÞbEmðn0Þd3n0

� �
¼ Pþk;n½ĉiðnÞ�:
For P�k;n we get an analogous expression. It is obvious that the expressions for Pþ½bEiðnÞ� and P�½bEiðnÞ� are cou-
pled due to the contained convolution. The decoupling idea of the Coarse Graining method is to find a closed
expression for P�½bEiðnÞ� which contains low-frequency components only. This expression corresponds in real
space to a quantity that contains components with period lengths larger than k. Oscillations of period lengths
smaller than k are in Fourier space represented by Pþ½bEiðnÞ�. As a result, the method first decouples both parts
and then inserts Pþ½bEiðnÞ� into the expression for P�½bEiðnÞ� to gain a closed expression for P�½bEiðnÞ�. The
decoupling idea is described in detail by Eberhard [11] where the upscaling is performed including all math-
ematical steps. The resulting upscaling models the influences of the sub-scale fluctuations by a scale-dependent
tensor quantity dmeffðn; kÞ which incorporates the impact of the unresolved fluctuations [11]:
dmeff
kr ðn; kÞ ¼

�klm

ð2pÞ6
ZZ b~mðn� n0Þin0l Pþk;n0n00

bGmnðn0;�n00Þ�nprin
00
p
b~mðn00 � nÞd3n00 d3n0;
where k denotes the upscaling scale which is determined by the definition of the projections in Fourier space,
see Eq. (6). dmeffðn; kÞ is called effective reluctivity tensor. We remark that the Coarse Graining method leads to
a tensor field on the coarser scale, even if the field on the fine scale is a scalar field. In dmeffðn; kÞ the summation
is taken over l;m; n and p, while k and r are fixed. dmeffðn; kÞ corresponds in real space to a non-local quantity.
For a localization it is evaluated for n ¼ 0 [11]. Thus, as an approximation we can set dmeff

kr ðn; kÞ �
dmeff

kr ðn ¼ 0; kÞ :¼ dmeff
kr ðkÞ, which leads to
dmeff
kr ðkÞ :¼ �klm

ð2pÞ6
ZZ b~mð�n0Þin0l Pþk;n0 ½P

þ
k;n00
bGmnðn0;�n00Þ��nprin

00
p
b~mðn00Þd3n00 d3n0: ð7Þ
After an inverse Fourier transform we get an upscaled formulation of Eq. (2) in real space on the scale k,
curl ð�m� dmeff
kr ðkÞ þ ~mðxÞjkÞcurl Ejk þ ixrEjk ¼ ixJGjk; ð8Þ
where only the indices of the effective reluctivity are depicted to clarify that it is a tensor. In this model, the
quantities JGjk; ~mðxÞjk, and the solution Ejk are upscaled to the scale k. All fine-scale information is incorpo-
rated into the effective reluctivity tensor dmeffðkÞ. On scale k the scalar sub-scale reluctivity field becomes a
reluctivity tensor field which is made of the space-independent ensemble mean, the upscaled fluctuations
and the effective reluctivity from the Coarse Graining method. The total effective tensor on k can then defined
by
meffðkÞ :¼ �m� dmeff
kr ðkÞ: ð9Þ
In the case of small variances q0 in (3), that is, weak heterogeneity, a perturbation theory approach can be
deployed to obtain an explicit result for meff [11]. The numerical computation of (9) will be regarded in Section 4.
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3.2. Perturbation theory for dmeff

In Ref. [11] dmeffðkÞ is calculated with the aid of perturbation theory. The results are valid for weakly het-
erogeneous reluctivity fields mðxÞ on the fine scale, i.e. if the variance q0 in the correlation function (3) is small,
q0 	 1. The integrations for dmeffðkÞ are treated using smooth cut off functions instead of the sharp projectors
in Fourier space, Pþk;n ! ½1� expð�n2k2=ð2a2

wÞÞ�, see [11]. It is shown in [11] that the non-diagonal entries of
the effective reluctivity tensor vanish and the integrations for the diagonal is given by
dmeff
kk ðkÞ ¼

ffiffiffi
2
p

q0l3
0 �m

3
M

l2
0

2
;xr

� �
�M l2

0 þ
k2

2a2
w

;xr

� �� �
; ð10Þ
where the function Mða; bÞ is defined by
Mða; bÞ :¼ 1

2a3=2
� ib

�m
ffiffiffi
a
p þ

ffiffiffi
p
p

b3=2

�m3=2
ð�1Þ3=4 exp

iab
�m

� �
erfc

ffiffiffiffiffiffiffiffiffiffiffi
iab=�m

p	 

:

Here erfc denotes the complex error function as defined, e.g. in [1].

3.3. Approximation of dmeff in real space

Next we briefly conclude how dmeffðkÞ is transformed to real space, as it is shown in [11]. In the case of a
global upscaling, k!1, all fluctuations are eliminated, and a constant value for the scalar reluctivity is
obtained, see [11], Appendix B.

For the upscaling to finite length scales, k <1, the derivation is more complicated due to the projection in
definition (7) of dmeff

kr ðkÞ. This projection can be seen as a characteristic function in Fourier space and hence
becomes a distribution S in real space (see [11]), with
Sðx; kÞ ¼ 1

ð2pÞ3
Z

ein�xPþk;nd3n:
The analysis in [11] yields the following asymptotics: Sðx; 0Þ � 0 for k! 0 and Sðx; kÞ � dðxÞ for k!1.
With this distribution definition (7) of the effective reluctivity tensor yields after an inverse Fourier transform
dmeff
kr ðkÞ ¼ �klm

Z
~mðxÞSðx� x0; kÞox0l

Gmnðx0; x00Þ�npr Sðx00 � x000; kÞox000p ~mðx000Þd3x000 � � � d3x:
A further approximation has to be introduced similar as in the case of upscaling of flow in heterogeneous med-
ia, see [13]. The idea is that Sð�; �Þ acts locally as a smoother when it is folded with a function with compact
support. Hence the impact of S together with an integration can be approximated by an averaging over a local
volume XðxÞk , which is proportional to the scale k. Therefore we define the three-dimensional cube
XðxÞk :¼
Y3

i¼1

½xi � k=as; xi þ k=as�
surrounding the point x. Due to the folding with the distribution the effective reluctivity tensor localized in the
sub-volume XðxÞk reads
dmeff
kr ðk; xÞ � �klm

Z
~mðxÞoxl

Z
XðxÞ

k

Gmnðx; x0Þ �npr ox0p ~mðx0Þ
 !

d3x0 d3x: ð11Þ
For k ¼ 0 and k!1 the approximation yields the exact effective reluctivity from (11), see [11]. So far, the
computation of dmeffðkÞ contains an ensemble average. For numerical computations it is useful to refer to
an effective reluctivity for a single realization where the tensor can be gained by the information of this single
realization. For this case the single realization tensor dmreal can be defined analogously to (11), but without the
ensemble mean, so that dmeffðkÞ ¼ dmrealðkÞ holds true.
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Finally, we derive a partial differential equation which can be applied to compute the reluctivity tensor (11)
numerically. To calculate the tensor we need to know Green’s function Gmgðx; x0Þ and to sum over its columns
G�g. Due to the local integrations over the sub-volumes XðxÞk an approximation of G by a local Green’s function
is obvious, see [11].

In XðxÞk the local Green’s function GðxÞmg ðx0; x00Þ, where x is the index depicting the specific volume where the
tensor has to be calculated, can be defined by (x is fixed, the operators are acting on x0)
��m
X3

j¼1

o2
x0j
dimGðxÞmgðx0; x00Þ þ ixrdimGðxÞmg ðx0; x00Þ þ �ijk�klmox0j

~mðx0Þox0l
GðxÞmgðx0; x00Þ ¼ dðx0 � x00Þdig ð12Þ
in XðxÞk which implies a single equation system for each column indexed by g ¼ 1; 2; 3. The boundary condi-
tions for (12) will be specified in Section 4.

As a result, the local reluctivity tensor dmeff
kr ðkÞ from definition (11) can for a single realization be calculated

by
dmreal
kr ðk; xÞ :¼

Z
�klm~mðx0Þox0l

Z
XðxÞ

k

GðxÞmn ðx0; x00Þ�npr ox00p~mðx
00Þd3x00 d3x0: ð13Þ
For simplifications, we define
X ðxÞmr ðx0Þ :¼
Z

XðxÞ
k

GðxÞmn ðx0; x00Þ�nprox00p mðx
00Þd3x00; ð14Þ
where the indices m and r are fixed. Since we sum over q the index n is uniquely determined. The function X
satisfies an equation which is obtained multiplying Eq. (12) with �nprox00p ~mðx00Þ, where g is replaced by n, sum-
ming over the columns of the local Green’s function, and integrating. It yields for fixed index i for each of the
independent three columns of X ; X ðxÞ�r
��mMX ðxÞir ðx0Þ þ ixrX ðxÞir ðx0Þ þ ½curl~mðx0ÞcurlX ðxÞ�r ðx0Þ�i ¼ �ipr ox0p ~mðx0Þ: ð15Þ
Eq. (15) has to be solved for the three indices r ¼ 1; 2; 3 numerically. Accordingly, if X is known the reluctivity
tensor can be calculated numerically via
dmnum
kr ðk; x0Þ ¼

Z
XðxÞ

k

�klm ~mðx0Þox0l
X ðxÞmr ðx0Þd

3x0: ð16Þ
4. Numerical coarse graining

In this section, we will establish a variational formulation for Eq. (15) and show how a discretization using
a standard Galerkin method can be set up numerically.

4.1. Variational formulation

For the numerical Coarse Graining we refer to the three-dimensional unit cube, X ¼ ½0; 1�3. We provide a
partition of X with a cubic grid including d 2 N cubes on one edge of X, and a stochastical permeability field
lðxÞ which has constant values on the cubes of the grid. As a result, the reluctivity field mðxÞ can be obtained
by element-wise inversion.

We fix the length scale k to an arbitrary value for the upscaling. In the unit cube with the given reluctivity
field, we join several reluctivity cells to one block, in that way that each block is a cube again. Then the scale k
is defined by the number of reluctivity cells we merge.

Eq. (15) is governed by a differential operator of the form
curl~mðxÞcurlþ Idþ �mM: ð17Þ

To our knowledge, a stable discretization for this type of operator is not yet known. The main problem is to
find an appropriate space for a variational formulation. This is due to the fact that the Laplace operator
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cannot be handled with a variational formulation over the space Hðrot; XÞ, which is usually the appropriate
space for equations containing the curl curl operator, see e.g. [7].

On the other hand, the curl curl operator cannot be discretized by H1ðXÞ-conforming finite elements since
H1ðXÞ is a closed subspace of Hðrot; XÞ. It is well known that a treatment of curl curl equations by a H1ðXÞ-
conforming FEM leads to singularities of the solutions at re-entrant corners, which are not covered by H1ðXÞ,
see e.g. [9].

But for convex domains it is well known that the spaces XN ðXÞ :¼ H1ðdiv; XÞ \Hðcurl; XÞ and
HN ðXÞ :¼ fv 2 H1; v� n ¼ 0 on oXg coincide, see [8] and the therein given references.

Since the choice of the Coarse Graining blocks XðxÞk as stated above leads to convex domains, we analyze if a
treatment of the local Coarse Graining problems in form of Eq. (15) with H1-conforming finite elements is
possible.

We start with the vectorial form (15) of the additional equation for X :
��mMX ðxÞ�r ðx0Þ þ ixrX ðxÞ�r ðx0Þ þ curl~mðx0ÞcurlX ðxÞ�r ðx0Þ ¼ ��prox0p~mðx
0Þ: ð18Þ
Again r ¼ 1; 2; 3 indicates the columns of X . We study two different boundary conditions. Since the Laplacian
dominates the equation, we firstly choose Dirichlet boundary conditions on oXðxÞk ,
X ðxÞ�r ðx0Þ ¼ 0; and secondly

nðx0Þ � X ðxÞ�r ðx0Þ ¼ 0
ð19Þ
due to the convex domain argument, with nðx0Þ denoting the unit normal field for XðxÞk . We define
WðXðxÞk Þ :¼ fv 2 H1ðXðxÞk Þ; v satisfies the chosen boundary conditiong;

which leads to W ¼ H1

0 or W ¼ HN . Testing with functions w from WðXðxÞk Þ and applying the partial integra-
tion formulae (1a) for the curl curl and (1b) for the Laplacian, we obtain
Z

XðxÞ
k

�mfrX ðxÞ�r ðx0Þg � rwðx0Þdx0 þ
Z

XðxÞ
k

~mðx0ÞcurlX ðxÞ�r ðx0Þ � curlwðx0Þdx0

�
Z

oXðxÞ
k

fon X
ðxÞ
�r g � wðx0ÞdS �

Z
oXðxÞ

k

ff~mðx0ÞcurlX ðxÞ�r ðx0Þg � ng � wðx0ÞdS

þ
Z

XðxÞ
k

ixrX ðxÞ�r ðx0Þ � wðx0Þdx0 ¼
Z

XðxÞ
k

f��pr ox0p ~mðx0Þg � wðx0Þdx0; 8w 2WðXðxÞk Þ:
In the following the curled braces f�g also denote vectors. As natural boundary conditions we setR
fonX �rg � wdS ¼ 0 and

R
ff~mðx0ÞcurlX �rg � ng � wdS ¼ 0, where the derivation on is in the direction of the

normal unit. The problem then yields:
Find a function X ðxÞ�r in WðXðxÞk Þ, such that for all w 2WðXðxÞk Þ
aðX ðxÞ�r ; wÞ ¼ hl;wi; ð20Þ

with the Sesqui-linear form
aðX ðxÞ�r ; wÞ :¼
Z

XðxÞ
k

�mfrX ðxÞ�r ðx0Þg � rwðx0Þdx0 þ
Z

XðxÞ
k

ixrX ðxÞ�r ðx0Þ � wðx0Þdx0

þ
Z

XðxÞ
k

~mðx0ÞcurlX ðxÞ�r ðx0Þ � curlwðx0Þdx0
and the dual product hl;wiW0�W :¼
R

XðxÞ
k
f��pr ox0p ~mðx0Þg � wðx0Þdx0.

4.2. Domain triangulation and Galerkin method

We choose a consistent triangulation T h of the volume XðxÞk using tetrahedra. The unknowns are located in
the corner of the element nodes. The set of nodes is denoted by N N and we set NN :¼ jN N j. An iterative
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regular refinement gives a hierarchy T l; l ¼ 0; . . . ; L of nested consistent tetrahedral triangulations, 0 labeling
the coarsest level. Due to the regular refinement strategy the family of triangulations ðT hÞh is stable.

We apply a standard Galerkin method for the problem. As a finite dimensional subspace of W we set
Sh :¼ ff 2 CðXðxÞk Þ; f is linear on each tetrahedra and satisfies the boundary condition from ð19Þg;
and Sh :¼ ðShÞ3:
Problem (20) then reads: find X ðxÞ; h�r in Sh, such that for all w in Sh
aðX ðxÞ; h�r ; wÞ ¼ hl;wi: ð21Þ
A basis fui
1; u

i
2; u

i
3g; i ¼ 1; . . . ;NN for Sh can in each node yi be set as follows:
ui
1ðyiÞ ¼ uiðyiÞe1; ui

2ðyiÞ ¼ uiðyiÞe2; ui
3ðyiÞ ¼ uiðyiÞe3;
with the standard scalar shape functions u : R3 7!R and the canonical basis vectors eð�Þ. As a result, the total
number of test functions is 3NN and dimSh ¼ 3N N . With this basis the unknown functions X h � rðx0Þ are given
by ðr ¼ 1; 2; 3Þ:
X ðxÞ h
�r ðx0Þ ¼

XNN

j¼1

zj
1u

j
1ðx0Þ þ zj

2u
j
2ðx0Þ þ zj

3u
j
3ðx0Þ ¼

XNN

j¼1

zj
1 ujðx0Þe1 þ zj

2 ujðx0Þe2 þ zj
3 ujðx0Þe3: ð22Þ
The weights zj
d are complex-valued for all j 2 1; . . . ;N N and d ¼ 1; 2; 3. We abbreviate the vectors of nodal

unknowns by ~zd ¼ ðzj
dÞj; d ¼ 1; 2; 3. Finally problem (21) yields:

Find X ðxÞ; h�r in Sh, such that for all i ¼ 1; . . . ;N N :
aðX ðxÞ; h�r ; ui
dÞ ¼ hl;ui

di; ð23Þ

for each of the three basis vectors ud ; d ¼ 1; 2; 3.

4.3. Assembling the system matrix

The assembling proceeds analogously to the case of discretizing Maxwell’s equations applying a vector
potential formulation with unknown values in the nodes as it is shown e.g. in [21]. Insertion of X �r expressed
by (22) into (23) leads to the discrete equation system where we get three equations for the three components
of each column vector X �r. While the assembling of the system matrix does not depend on the column index of
X , the right-hand side discretization will differ with r as shown in Section 4.4.

We execute the assembling of the first component ði ¼ 1Þ for u1 explicitly (r fixed).
This results in the following problem: Search complex weights ~z1;~z2;~z3 2 CNN , such that for i ¼ 1; . . . NN
aðX ðxÞ; h�r ; ui
1Þ ¼ a

XNN

j¼1

zj
1 uj e1 þ zj

2 uj e2 þ zj
3 uj e3; ui e1

 !
¼
XNN

j¼1

a zj
1 uj e1 þ zj

2 uj e2 þ zj
3 uj e3; ui e1

� �
¼
XNN

j¼1

zj
1 aðuj e1; u

i e1Þ þ zj
2 aðuj e2; u

i e1Þ þ zj
3 aðuj e3; u

i e1Þ ¼ hl;ui
1i ¼ hl;ui e1i:
We remember that we search for ~z1;~z2 and ~z3 and that the integrations are executed on XðxÞk . This yields start-
ing from (23)
�m
Z
r

XNN

j¼1

zj
1 uj

 !
� rui dx0 þ ixr

Z XNN

j¼1

zj
1 uj � ui dx0

þ
Z

~mðx0Þcurl
XNN

j¼1

X3

d¼1

zj
d uj ed

( )( )
� curlui e1f gdx0 ¼ b1;rðxÞ 8i ¼ 1; . . . ;NN ;
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where b1;rðxÞ :¼
R
�1pr ox0p ~mðx0Þui dx0. Considering the linearity of curl curl and taking advantage of the identity

curl/ðxÞaðxÞ ¼ /ðxÞcurl aðxÞ � aðxÞ � r/ðxÞ which holds for scalar functions /ðxÞ and vectors a, we obtain
curl zj

d uj ed ¼ �ed � zj
druj ¼ zj

druj � ed and curlui e1 ¼ rui � e1. The equation system then reads
Z XNN

j¼1

zj
1½�mruj � rui þ ixruj � ui�dx0 þ

Z
~mðx0Þ

XNN

j¼1

zj
1

0

�o3uj

�o2uj

0B@
1CAþ zj

2

�o3uj

0

o1uj

0B@
1CAþ zj

3

o2uj

o1uj

0

0B@
1CA

8><>:
9>=>;

�
0

�o3ui

�o2ui

8><>:
9>=>;dx0 ¼ b1;rðxÞ 8i ¼ 1; . . . ;NN ;
and finally
XNN

j¼1

R
�mruj � rui þ ixruj � ui dx0

0

0

8><>:
9>=>; �

zj
1

0

0

8><>:
9>=>;�

Z
~mðx0Þ

XNN

j¼1

�zj
2o3 uj þ zj

3o2uj

�zj
1o3 uj þ zj

3o1uj

�zj
1o2 uj þ zj

2o1uj

8><>:
9>=>; �

0

o3ui

o2ui

8><>:
9>=>;dx0

¼ b1;rðxÞ 8i ¼ 1; . . . ;N N :
The equation system can be rewritten as:
Find ðzj

dÞj; d ¼ 1; 2; 3, such that for all i ¼ 1; . . . ;NN
XNN

j¼1

R
�mruj � rui þ ~mðx0Þo2ujo2ui þ ~mðx0Þo3ujo3ui dx0

�
R

~mðx0Þo1ujo2ui dx0

�
R

~mðx0Þo1ujo3ui dx0

8><>:
9>=>; �

zj
1

zj
2

zj
3

8><>:
9>=>;þ

XNN

j¼1

ixr

R
ujui dx0

0

0

8><>:
9>=>; �

zj
1

zj
2

zj
3

8><>:
9>=>; ¼ b1;rðxÞ:

ð24Þ
For further simplifications we define the vectors
sij
1 :¼

R
�mruj � rui þ ~mðx0Þo2ujo2ui þ ~mðx0Þo3ujo3ui dx0

�
R

~mðx0Þo1ujo2ui dx0

�
R

~mðx0Þo1ujo3ui dx0

8><>:
9>=>;
and
mij
1 :¼

R
ujui dx0

0

0

8><>:
9>=>;:
Analogously, we get the equations for the second and third component. Regarding Eq. (24) it is obvious that
the three components of the weighting vector in a node yj, denoted by z1; z2; z3 are coupled within the equa-
tions for the three components of X �r.

Considering a lexicographical numbering of the nodes we choose a point-wise gathering for the unknowns
since it leads to smaller blocks compared to an equation-wise aggregation. A node yi then is coupled with each
of his neighbor nodes yj via a complex ð3� 3Þ-matrix, and in every node we have to solve the following equa-
tion system:
Sij zj þ iMij zj ¼ bi ð25Þ
with the coupling matrices S and M which we will stiffness matrix and mass matrix, respectively.
This notation is adopted from [7] where a discretization of Maxwell’s equations with Whitney elements is

shown. The mass matrix contains the parts arising from the identity, in the stiffness matrix the remaining parts
of the operator – the parts resulting from the Laplacian and the curl curl operator – are accumulated. We
remark that this is similar when treating Maxwell’s equations with Whitney-1-elements, see [7]. The stiffness
and mass matrix have the following structure:
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Sij ¼
ðs1; ijÞt

ðs2; ijÞt

ðs3; ijÞt

0B@
1CA and Mij ¼

ðm1; ijÞt

ðm2; ijÞt

ðm3; ijÞt

0B@
1CA
where ð�Þt denotes the transpose.

4.4. Right-hand side

Next we consider the right-hand side which depends on r. As the fluctuations mðx0Þ are non-continuous
functions on XðxÞk , we have to apply a partial integration for b1; b2; b3. Depending on the choice of boundary
conditions we have to separate two cases:

If we choose Dirchilet boundary conditions X ðxÞ�r ðx0Þ ¼ 0, the test functions u vanish on the boundary of
XðxÞk , and therefore the boundary terms of a partial integration as well. At the ith node yi the kth component
yields for with fixed p
bk;rðxÞ ¼
Z

XðxÞ
k

�kpr ox0p~mðx
0Þuiðx0Þd3x0 ¼ �

Z
XðxÞ

k

�kpr ~mðx0Þox0pu
iðx0Þd3x0:
Obviously the right-hand side varies with the row index k and the column index r, and it vanishes for k ¼ r.
Using the boundary conditions nðx0Þ � X ðxÞ�r ðx0Þ ¼ 0, the test functions do not vanish on the boundary and

the right-hand side becomes
Z
XðxÞ

k

�kpr ox0p~mðx
0Þuiðx0Þd3x0 ¼ �

Z
XðxÞ

k

�kpr ~mðx0Þox0pu
iðx0Þd3x0 þ

ZZ
XðxÞ

k

~mðx0Þuijx
0
p¼1

x0p¼0 dx0v dx0w;
where the indices v and w have to differ from the fixed index p which is the direction of the one-dimensional
partial integration. In each component we have to integrate over element-wise constant functions, so the Mid-
point rule renders exact results.

4.5. Decoupling real and imaginary part

For the numerical computation we have to decouple the complex equation system (25) for the unknown
weights zj

1; z
j
2; z

j
3 into real and imaginary part. This can be done analogously to the case of Whitney elements,

see e.g. [29]. Let zj ¼ uj þ ivj. Then
Sij fuþ ivgj þ iMij fuþ ivgj ¼ bi
re þ ibi

im () Sij fugj �Mji fvgj þ i ½Mij fugj þ Sij fvgj� ¼ bi
re þ ibi

im

()
S �M

M S

� �ij

6�6

u

v

� �j

¼
bre

bim

� �i

;

and two domain nodes yi and yj are coupled with the following ð6� 6Þ-matrix:
s11 s12 s13
..
.
�m11 0 0

s21 s22 s23
..
.

0 �m22 0

s31 s32 s33
..
.

0 0 �m33

: : : : : : :

þm11 0 0 ..
.

s11 s12 s13

0 þm22 0 ..
.

s21 s22 s23

0 0 þm33
..
.

s31 s32 s33

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

ij

6�6
where the first three rows exhibit the real part, the last three yield the imaginary part of the system.
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On the diagonal of this matrix we find the parts of the Laplacian as well as the parts of the Laplacian part
of curl curl, i.e., curl curl ¼ �Mþ graddiv in three dimensions:
skk ¼
Z

XðxÞ
k

�mrui � ruj þ ~mðx0Þ
X3

l¼1

ð1� dklÞolu
i olu

j

 !
dx0:
The outer diagonal elements of S contain the grad div parts of curl curl:
skl ¼
Z

XðxÞ
k

oku
i olu

j;
and on the diagonal of M the parts resulting from the identity,
mkk ¼ xr
Z

XðxÞ
k

ui � uj:
In the stiffness matrices S, we need to execute integrations over derivatives of linear functions. For these are
constant we can apply the Midpoint rule again. In the mass matrices M a quadrature formula has to be used
since we have to integrate over the product of two element-wise linear functions.

4.6. Calculation of dmeff from X

After calculating all weights in all nodes, we obtain the reluctivity tensor from (16) using the basis (22).
Exemplary we state the results for the first component with fixed column index r:
dmeff
1r ¼

Z
XðxÞ

k

�123 ~mðx0Þox0
2

XN N

j¼1

zj
3u

j

 !
þ �132 ~mðx0Þox0

3

XNN

j¼1

zj
2u

j

 !
d3x0 ¼

Z
XðxÞ

k

~mðx0Þ
XNN

j¼1

zj
3ox0

2
uj � zj

2ox0
3
uj

	 

d3x0

¼
Z

XðxÞ
k

~mðx0Þ
XNN

j¼1

½ðuj
3ox0

2
uj � uj

2ox0
3
ujÞ þ i ðvj

3ox0
2
uj � vj

2ox0
3
ujÞ�d3x0;
with the real parts u2; u3 and imaginary parts v2; v3 of the complex weights z2; z3. The steps for the second and
third component are analogous.

4.7. Solving Maxwell’s equations

So far we have shown the numerical treatment for the Coarse Graining sub-problems. Using the effective
reluctivity tensors from the Coarse Graining method, we moreover have to solve the Maxwell-problem (2).
The latter does not include the Laplacian, so the numerical treatment is completely different.

We would like to remark that in the case of solving the standard Maxwell Eq. (2) we choose in Section 5 a
standard FEM with a variational formulation over the space Hðrot; XÞ and a basis of Whitney-1-elements, as
it is done, e.g. in Refs. [29,7], and set appropriate boundary conditions. We refer the reader to [29] for a
detailed description of the discretization and the iterative methods useful to solve problem (2).

5. Numerical results

In this section we present the numerical results for the effective reluctivity tensors computed by the discret-
ization of Section 4. We compare the numerical results with the results of the perturbation theory. Therefore
we average the numerical tensors over the domain to obtain space-independent scalar permeability fields on
the coarser scale. We also show how some characteristics of the Maxwell problem such as the Ohmic losses
and the L2-norm of the solution scale when upscaling to larger length scales. The numerical discretization
is implemented in the simulation toolbox UG, see [4,5].

In order to solve the discrete equation system (23) for the columns of X , we choose a standard linear
multigrid method. As a pre- and post-smoother we apply a Gauss–Seidel and execute a V ð1; 1Þ-cycle. The
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hierarchy of grids is given by T l, which was introduced in 4.2. We choose the grid for the Coarse Graining
Blocks fine enough that the reluctivity is always constant on each element of the discretization grid.

5.1. Comparison of the results for different boundary conditions

On the unit cube we provide a permeability field with 64� 64� 64 cells. For each experiment the field has a
mean value of �l ¼ 2:0 and a variance of r2 ¼ 0:1. For the reluctivity field we thus obtain a mean �m ¼ 0:5137
and a variance q0 ¼ 0:0079, using an ensemble of ten realizations. The correlation length is l0 ¼ 0:03125.

Fig. 1 left shows the numerical results of the first and third components m11 and m33 of the effective reluctivity
tensor in comparison with the theoretical value given by (10) as a function of the scale k=l0. The numerical
results are computed for n� X �r ¼ 0 boundary conditions. The results show a quite good conformance with
a significant deviation for an upscaling to scales k with k=l0 � 8.

Fig. 1 right displays the numerical results for Dirichlet boundary conditions X �r ¼ 0 for the columns of X .
Again we rerun the experiment 10 times. We remark that the choice of the boundary conditions does not seem
to have great impact to the solution of the problem. We explain about this as follows. Using boundary con-
ditions X �r ¼ 0 corresponds to a discretization of the Coarse Graining problems with H1

0-conforming Finite
Elements, the second type of boundary condition implies a discretization over W ¼ fv 2 H1; n�
v ¼ 0 on the boundary:g. We remark H1

0 is a subspace of W, but for complex domains both spaces coincide,
as explained in Section 4. Furthermore the Laplacian dominates the equation. Hence we guess that the
approximation leads to a solution in H1

0, which coincides with the solution in W.
For the given experimental setup we examine the scale-dependent behavior of two quantities in order to

estimate the quality of an upscaling with the Coarse Graining method. We choose the L2-norm of the solution
E and the Ohmic loss. The loss is the energy which is transformed into heat and has to be compensated by the
generator with its current J G. For both quantities we define as values of the finest scale on the scale k ¼ 0 with
the scalar reluctivity field. The Ohmic losses are in physics defined by P Ohm :¼ 1

2

R
X r jEj2 dx, see [19]. We then

solve Maxwell problem (8) on different scales and compute the two quantities. Table 1 shows the relative pro-
gression of the L2-norm of the solution E and the Ohmic losses over scales k=l0. For an upscaling to minor
scales we see a deviation of about 10%. That means that the Coarse Graining method here is not able to repro-
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Fig. 1. Comparison of the scale-dependent behavior of meff
st from perturbation theory and mnum from numerical simulations for a reluctivity

field with �m ¼ 0:5137 and q0 ¼ 0:0079 with n� X �r ¼ 0 (left side) and X �r ¼ 0 (right side) as boundary conditions.

Table 1
Scale-dependent behavior of the L2-error and the total Ohmic losses regarding an upscaling to various resolution scales

k=l0 1.0 2.0 3.0 4.0 8.0 16 32

kEkL2
1 0.900 0.918 0.932 0.918 0.937 0.936

P Ohm 1 0.891 0.913 0.929 0.925 0.937 0.938
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Fig. 2. Comparison of the scale-dependent behavior of meff
st from perturbation theory and mnum from numerical simulations for a reluctivity

field with �m ¼ 0:262 and q0 ¼ 0:015 (left side) and a field with �m ¼ 0:702 and q0 ¼ 0:033 (right side). For both simulations boundary
conditions X �r ¼ 0 have been chosen.
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duce the influences of sub-scale fluctuations. But for an upscaling to larger scales the deviation decreases under
6%, what can be considered as a very good result.

5.2. Computations for different reluctivity fields

Here we will show the effective reluctivities for different heterogeneous materials. We use fields with �l ¼ 4:0
and r2 ¼ 0:7 and with �l ¼ 1:5 and r2 ¼ 0:1. For the first field we obtain �m ¼ 0:262 and q0 ¼ 0:015 for reluc-
tivity field, for the second the values are �m ¼ 0:702 and q0 ¼ 0:033.

In both simulations the isotropic correlation length is l0 ¼ 0:125 and we set X �r ¼ 0 on the boundary. The
experiments are repeated 10 times. The results from theory and simulations are shown in Fig. 2 for the first
setup and in Fig. 2 for the second. Both simulations show good accordance between the theoretical and
numerical results for the effective reluctivity tensors.

6. Conclusion

The paper studies a numerical upscaling of the eddy-current approximation of the Maxwell equations for
heterogeneous media using the Coarse Graining method. The magnetic permeability of the heterogeneous
media is treated by a stochastic modeling. We apply the Coarse Graining method to develop a numerical
upscaling of the eddy-current model which results in effective reluctivity tensors. The latter are scale- and
space-dependent and model the influence of sub-scale fluctuations in the upscaled eddy-current model. Eber-
hard [11] derived a perturbation theory to compute the reluctivity tensors and showed that they could be com-
puted numerically by solving local partial differential equations.

In particular, we address the numerical computation of the effective reluctivity tensors solving the local dif-
ferential equations. These equations are made up of the Laplacian and curl–curl operator for the electric field.
To our knowledge the so combined operator has not yet been analyzed in the literature – neither in theory nor
in numerical approaches. We present a discretization of this operator on convex domains based on an exten-
sion of the standard variational formulation for the Laplacian in three spatial dimensions. The resulting dis-
crete equation system can be divided into real- and imaginary part. As appropriate boundary conditions we
choose either zero Dirichlet boundary conditions or n� X �r ¼ 0. Both conditions result in very similar numer-
ical results. We remark that in general the assembling of the system matrix is analogous to the case of the dis-
cretization of Maxwell’s equations by Whitney-1-elements or by a nodal approach for a vector potential
formulation.

We numerically solve the arising system of equations by a standard multigrid method. Comparing the
numerical results with the results of the perturbation theory we observe a very good agreement. Moreover, using
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the effective reluctivities in the upscaled eddy-current model we obtain a very similar system behavior compared
to the fine-scale model in terms of the L2-error and the total Ohmic losses along with less computational effort.
In the future, we would like to extend the Coarse Graining method to tensor fields in order to enhance an iter-
ative upscaling of the fields. It would be also interesting to study the numerical upscaling for non-convex
domains to access practical applications. Further, it could be of interest to analyze the Coarse Graining method
as a grid transfer in a multigrid method for Maxwell’s equations as done for flow problems in [14].
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